Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Electron. j. biotechnol ; 25: 1-8, ene. 2017. graf, ilus
Article in English | LILACS | ID: biblio-1008175

ABSTRACT

Background: Ascorbic acid (Asc) is one of the most abundant antioxidants and it serves as a major contributor to protect plants against oxidative damage. Plants use two enzymes that participate in the metabolic recycling of Asc. One of these two enzymes is dehydroascorbate reductase (DHAR). It directly regenerates Asc from its oxidized state and thus prevents Asc from being irreversibly hydrolyzed to 2, 3-diketogulonic acid. This study aimed to examine whether over-expression of DHAR leads to an enhanced oxidative stress tolerance in tobacco plants. Results: In this study, we functionally characterized a novel JcDHAR gene from Jatropha curcas and found via quantitative RT-PCR analysis that JcDHAR can be induced with H2O2, salt and PEG stresses. The DHAR activities of transgenic tobacco plants increased from 2.0 to 5.3 fold compared to wild-type plants. As a result, the transgenic plants displayed enhanced tolerance to oxidative stress. Conclusions: Our results indicate that JcDHAR expression can effectively enhance the tolerance to oxidative stress in plants.


Subject(s)
Oxidoreductases/metabolism , Ascorbic Acid/administration & dosage , Tobacco/enzymology , Plants, Genetically Modified/enzymology , Antioxidants/administration & dosage , Oxidoreductases/isolation & purification , Oxidoreductases/genetics , Ascorbic Acid/metabolism , Stress, Physiological , Tobacco/drug effects , Blotting, Western , Plants, Genetically Modified/drug effects , Reactive Oxygen Species , Oxidative Stress , Reverse Transcriptase Polymerase Chain Reaction , Salt Tolerance , Antioxidants/metabolism
2.
Indian J Biochem Biophys ; 2011 June; 48(3): 170-174
Article in English | IMSEAR | ID: sea-135316

ABSTRACT

A 1312 bp 5' flanking region of Salicornia europaea choline monooxygenase (SeCMO) gene was isolated using the anchored PCR. To investigate the mechanism of regulation for this stress-induced gene, the SeCMO promoter--glucuronidase (GUS) chimeric gene constructs containing five deletions F1, F2, F3, F4 and F5 were introduced into tobacco (Nicotiana tabacum L.) by Agrobacterium-mediated transformation. The functional properties of each promoter fragment were examined by assaying GUS activity in the leaves of transgenic tobacco treated with abiotic stresses (NaCl, PEG6000 and low temperature). The GUS activity in transgenic tobacco with F2 (-1056 to +8) construct showed highest increase under all the three abiotic stresses. Thus, the study provided a potential promoter induced by the salt, dehydration and cold for the plant genetic manipulation.


Subject(s)
Base Sequence , Chenopodiaceae/genetics , Chenopodiaceae/metabolism , Cold Temperature , Glucuronidase/biosynthesis , Glucuronidase/genetics , Molecular Sequence Data , Oxygenases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Polyethylene Glycols , Promoter Regions, Genetic/genetics , Sodium Chloride , Tobacco/enzymology , Tobacco/genetics
3.
J Biosci ; 2008 Jun; 33(2): 177-84
Article in English | IMSEAR | ID: sea-110913

ABSTRACT

Issues related to the nicotine content of tobacco have been public concerns.Several reports have described decreasing nicotine levels by silencing the putrescine N-methyltransferase (PMT) genes, but the reported variations of nicotine levels among transgenic lines are relatively low in general. Here we describe the generation in tobacco (Nicotiana tabacum) lines with widely different, reduced nicotine levels using three kinds of RNA-silencing approaches.The relative efficacies of suppression were compared among the three approaches regarding the aspect of nicotine level in tobacco leaves.By suppressing expression of the PMT genes, over 200 transgenic lines were obtained with nicotine levels reduced by 9.1-96.7%. RNA interference (RNAi) was the most efficient method of reducing the levels of nicotine,whereas cosuppression and antisense methods were less effective. This report gives clues to the efficient generation of plants with a variety of metabolite levels, and the results demonstrate the relative efficiencies of various RNA-silencing methods.


Subject(s)
Base Sequence , DNA Primers , Methyltransferases/genetics , Nicotine/metabolism , Polymerase Chain Reaction , RNA Interference , RNA, Plant/genetics , Tobacco/enzymology
4.
Indian J Biochem Biophys ; 2007 Feb; 44(1): 26-30
Article in English | IMSEAR | ID: sea-27077

ABSTRACT

Aspergillus fumigatus contains a heat-stable phytase of great potential. To determine whether this phytase could be expressed in plants as a functional enzyme, we introduced the phytase gene from A. fumigatus (fphyA) in tobacco (Nicotiana tabacum L. cv. NC89) by Agrobacterium-mediated transformation. Phytase expression was controlled by the cauliflower mosaic virus (CaMV) 35S promoter. Secretion of recombinant phytase (tfphyA) to the extracellular fluid was established by use of the signal sequence from tobacco calreticulin. Forty-one independent transgenic plants were generated. Single-copy line A was selected based on segregation of T1 seeds for kanamycin resistance, phytase expression and Southern blotting analysis for use in further study. After 4-weeks of plant growth, the phytase was accumulated in leaves up to 2.3% of total soluble protein. tfphyA was functional and shared similar profiles of pH, temperature and thermal stability to the same enzyme expressed in Pichia pastoris (pfphyA). The expressed enzyme had an apparent molecular mass of 63 kDa and showed maximum activity at pH 5.5, and temperature, 55 degrees C. It had a high thermostability and retained 28.7% of the initial activity even after incubation at 90 degrees C for 15 min. The above results showed that the thermostable A. fumigatus phytase could be expressed in tobacco as a functional enzyme and thus has the potential of overexpressing it in other crop plants also.


Subject(s)
6-Phytase/genetics , Aspergillus fumigatus/enzymology , Base Sequence , DNA, Fungal/genetics , Enzyme Stability , Gene Expression , Genes, Fungal , Plants, Genetically Modified , Recombinant Proteins/genetics , Tobacco/enzymology
5.
Electron. j. biotechnol ; 7(1): 9-29, Apr. 2004. ilus, graf
Article in English | LILACS | ID: lil-363993

ABSTRACT

Pectin methylesterase (PME) is an enzyme located in the plant cell wall of higher plants whose physiological role is largely unknown. We had isolated a PME gene from a tomato genomic library, including 2.59 kb of 5üL flanking region and the coding region. Both coding and promoter region were sequenced and computer analyzed. Tobacco transgenic plants were created harboring constructs in which 2.596 Kb, 1.306 Kb and 0.267 Kb sizes of the promoter were driving the expression of âÀ-Glucuronidase gene (GUS). GUS activity was studied by histochemical and fluorometric assays. Two introns of 106 and 1039 bp were found in the coding region and phylogenetic analysis placed this PME gene closer to genes from Citrus sinensis and Arabidopsis thaliana than tomato fruit-specific PME genes. In the promoter, it was found direct repeats, perfect inverted repeats and light responsive elements. GUS histochemical analysis showed activity in all plant tissues with the exception of pollen. The reduction in the promoter size induced a reduction in GUS activity in root, stem and leaf. Furthermore, root and leaf showed the highest and lowest activity, respectively. We had isolated a tomato PME gene with novel characteristics as compared with other known PME genes from tomato.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Tobacco/enzymology , Tobacco/genetics , Cloning, Molecular , Gene Expression , Gene Expression Regulation, Plant , Glucuronidase/metabolism , Carboxylic Ester Hydrolases/physiology , Molecular Sequence Data , Plants, Toxic , Promoter Regions, Genetic , Plants, Genetically Modified/genetics
SELECTION OF CITATIONS
SEARCH DETAIL